

NEW TETRAHYDRONAPHTHALENE DERIVATIVES AS COMBINED THROMBOXANE RECEPTOR ANTAGONISTS AND THROMBOXANE SYNTHASE INHIBITORS¹

Bernard Cimetière, Thierry Dubuffet, Caroline Landras, Jean-Jacques Descombes, Serge Simonet, Tony J. Verbeuren and Gilbert Lavielle*

Institut de Recherches Servier, Centre de Recherches de Croissy, 125, Chemin de Ronde, 78290 Croissy-sur-Seine, France

Received 2 March 1998; accepted 21 April 1998

Abstract: A pyridine group was linked to the tetrahydronaphthalene moiety of the derivatives described in the preceding paper, to afford new combined thromboxane receptor (TP-receptor) antagonists and synthase inhibitors. The most interesting compound $\underline{2f}$ inhibits TXA2 synthase with an IC50 value of 0.64 μ M and the aggregation of human platelets with an IC50 value of 0.063 μ M and shows a long duration of action in different species after oral administration. © 1998 Elsevier Science Ltd. All rights reserved.

Arachidonic acid is converted by the enzyme cyclooxygenase to the unstable prostaglandine endoperoxide PGH₂ which is in turn the precursor of numerous metabolites (Fig 1). PGH₂ is rearranged into thromboxane A₂ (TXA₂) by the enzyme TXA₂ synthase. Binding of TXA₂ to its receptor leads to vasoconstriction and platelet aggregation while PGI₂, another metabolite of PGH₂ has vasodilating and platelet aggregation inhibition properties. PGH₂ is itself an agonist of the TP-receptor, causing also platelet aggregation and vasoconstriction².

Fig. 1

Both TP-receptor antagonists³ and inhibitors of TXA₂ synthase (TxSI)⁴ have been developed as specific antiplatelet drugs. Clinical results with TxSI's have been disappointing. The lack of clinical efficacy of these compounds was attributed to the accumulation of the PGH₂ which activates the TP-receptor. A combined TP-receptor antagonist/TxSI drug would be a cure of choice in a range of thrombotic diseases, because the action of both TXA₂ and PGH₂ would be blocked by the TP-receptor antagonist component while the metabolism of PGH₂ would be shunt to the beneficial PGI₂ by the TxSI component⁵.

Several compounds which combine both activities in one molecule^{6, 7} have been reported. The key structural feature of a potent TxSI is the presence of a ligand for heme iron, such as the 3-pyridyl group, and a carboxylic acid at a distance of approximately 10 Å^{8, 9}.

* E-mail: shuet@servier.fr

Fax: 33 1 41 18 24 70

0960-894X/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved.

PII: S0960-894X(98)00221-2

In this report we describe the synthesis and pharmacological evaluation of new compounds combining both activities, in which the 3-pyridyl group was introduced on appropriate positions of the very potent TP-receptor antagonist $\underline{\mathbf{1}}^{10}$. Examination of molecular models suggested that the 3-pyridyl moiety should be grafted on position 2 or 3 of the tetrahydronaphthalene framework to lead to potentially active compounds $\underline{\mathbf{2}}$.

NHSO₂

$$R_1 \text{ or } R_2 = NHSO_2$$

$$R_1 \text{ or } R_2 = NHSO_2$$

$$R_1 \text{ or } R_2 = R_1 \text{ alkyl, phenyl}$$

$$R_1 \text{ or } R_2 = R_2 \text{ or } R_$$

Chemistry:

The different compounds $\underline{2}$ were obtained following the same type of reactions which has been described in the preceding paper. The main features of the synthesis are the use of Diels-Alder reaction and Stille coupling.

Compounds $\underline{2a-d}$ were prepared following the sequence depicted in Scheme I. The iodoaldehyde $\underline{3}^{10}$ was coupled under Stille conditions either with 3-(tributylstannyl)pyridine or with 3-(tributylstannylmethyl) pyridine¹¹ to give aldehydes $\underline{4}$ and $\underline{5}$ respectively. In a same manner, aldehydes $\underline{7}$ and $\underline{8}$ were obtained starting from bromoaldehyde $\underline{6}^{10}$. Then the resulting aldehydes were submitted to a chain elongation reaction which led to the final acidic compounds $\underline{2a-d}$ (overall yield 70 - 80% from substituted aldehydes).

a: 3-(tributylstannyl)pyridine, Pd(PPh₃)₄, NMP, 110°C, 16 h, 80%; b: Ph₃P=CH-COOCH₃, toluene, reflux; c: NaBH₄, CoCl₂, MeOH, 20°C; d: NaOH, MeOH/H₂O, reflux and then CH₃COOH; e: 3-(tributyl-stannyl-methyl)pyridine, Pd(PPh₃)₄, NMP, 110°C, 16 h, 80%.

Compounds where R^1 is alkyl or phenyl were obtained starting from the 3-bromopyrone $\underline{9}^{10}$ (Scheme II). $\underline{9}$ was heated at reflux of a five fold excess of an appropriate acetylenic ester for at least 12 hours. The 2-alkyl-3-bromo-5,6,7,8 tetrahydronaphthalenic esters obtained in a yield varying from 30 % to 70 % were transformed into aldehydes $\underline{10}$. The latter were reacted with the tributylstannane derivative of the 3-methylpyridine¹¹ (yield 50 - 80%). Then $\underline{11}$ were transformed in compounds $\underline{2e-h}$ (overall yield 30 - 70% from the substituted aldehyde).

Finally the compounds depicted in Table II bearing a longer acidic chain than the compounds shown in Table I were obtained starting from the different aldehydes $\underline{5}$, $\underline{8}$ and $\underline{11e}$ (R¹ = CH₃) (Scheme III). Reaction of these aldehydes and (ω -carboxypropyl) or (ω -carboxybutyl) triphenylphosphonium halides which were treated with potassium tertbutoxide in tetrahydro-furan at -10°C to room temperature led to the formation of a mixture of E and E isomers in good yields. The resulting two geometrical E and E isomers were separated by chromatography¹² except in the case of reactions with the (ω -carboxypropyl) triphenylphosphonium bromide where the E derivatives were formed in proportion less than 10%. Such anomalous E-stereoselectivity in the reaction of "non stabilized" triphenylphosphorus ylides bearing anionic groups with aromatic aldehydes were previously reported by Marianoff¹³. In contrast the (ω -carboxybutyl) triphenylphosphonium chloride used in the same experimental conditions gave rise to much higher proportions of E isomers (40 to 60%). This difference in the E/E ratio could be explained by the capability of the butylanionic chain, but not the propyl, to form an hydrogen bond or a salt bridge with the sulfonamide residu¹⁴.

a: R^1 -C=C-COOCH₃, reflux, 12-24 h; b: LiAlH₄/AlCl₃, THF/Et₂O, 20°C; c: 4-benzylpyridinium-dichromate, CH₂Cl₂, 20°C; d: 3-(tributylstannylmethyl)pyridine, Pd(PPh₃)₄, NMP, 110°C, 16 h; e: Ph₃P=CH-COOCH₃, toluene, reflux; f: NaBH₄/CoCl₂-6H₂O, MeOH, 20°C; g: NaOH, MeOH/H₂O, reflux, then CH₃COOH

Scheme III

R2

NHSO2

CI

Ph3P-(CH₂)_{n+1}COOH,
$$X^{O}$$
 $BuOK/THF$, 25°
 $n = 2 \text{ or } 3$

R1

CH

S: R1 = H; R2 = 3-methylpyridine
R1 = 3-methylpyridine; R2 = H

11e: R1 = CH₃; R2 = 3 methylpyridine

2i-p

Biological Results:

The TP-receptor antagonistic activities of the compounds were evaluated in a racemic form, using the techniques described in the preceding paper¹⁰. The compounds were also tested for TxSI activity in human whole blood following the method described by Watts¹⁵. The *in vitro* biological profile of compounds <u>2a-p</u> is summarized in Tables I and II. One reference dual TXA₂/TxSI compound, Samixogrel, was tested for comparison.

All the compounds described in the tables, except $\underline{2e}$, are potent TXA_2 antagonists on the isolated tissues $(PA_2 \ge 8)$. The result obtained for $\underline{2e}$ is difficult to interpret since compounds bearing no substituent $(\underline{2d})$ or longer alkyl chain on position 2 $(\underline{2f}$ and $\underline{2g})$ are much more potent antagonists. Previously we have found the best activities for compounds having a benzyl substituent¹⁰. In this paper, the best antagonistic activities are obtained when the benzyl is replaced by a pyridine moiety linked by a methylene to the tetrahydronaphthalene ring $(\underline{2b} \rightarrow \underline{2a}; \underline{2d} \rightarrow \underline{2c})$. The length of the carboxyalkyl chain has been varied and the compounds possessing a pentenoic acidic chain appear to be the most potent $(\underline{2i}, \underline{2l})$. The configuration E or E did not influence greatly on the antagonistic activity $(\underline{2m} \rightarrow \underline{2n}; \underline{2o} \rightarrow \underline{2p})$. A moderate inhibition of aggregation of human platelets observed with certain compounds which exhibited good PA_2 values may be due to a high plasma-protein binding $(\underline{2k}, \underline{2m})$.

Two different conclusions can be made concerning the enzymatic activity. Firstly, compounds bearing a propanoic acidic chain (Table I) are inhibitors of the TXA₂ synthase only when the pyridine ring is grafted on position 3. Secondly, an increase of the length of the acidic chain allows both derivatives substituted on position 2 or 3, to be inhibitors of the synthase (Table II).

The purpose of our work was to select compounds possessing potent TP-receptor antagonistic activities with additionnal TxSI properties, differing from Samixogrel which is a potent TXA₂ synthase inhibitor (Table I). The best compromise was obtained for compounds $\underline{2d}$, $\underline{2f}$ and $\underline{2k}$ because of their powerfull antiplatelet activity. These compounds have been tested *in vivo* in different species. Oral administration of $\underline{2f}$ (10 mg/kg) to conscious rats produced long lasting (> 6 h) and complete TXA₂ synthase inhibition and TP receptor blockade (as measured by inhibition of *ex vivo* U46619 induced platelet aggregation).

TABLE I: Biological activities of compounds 2

\mathbb{R}^2	NHSO ₂				
СООН			Inhibition of U46	Anti- synthase	
Compound ^a	R ^t	R²	contraction of isolated rabbit saphenous vein $(pA_2)^b$	aggregation of human platelets (IC ₅₀ μM) ^b	activity (IC ₅₀ μM) ^b
<u>2a</u>		Н	9.7	0.14	> 10
<u>2b</u>		Н	9.5	0.02	> 10
<u>2c</u>	Н		7.9	0.67	> 5
2 <u>d</u>	Н		9.7	0.007	1.1
<u>2e</u>	CH ₃		6.8	0.61	0.85
<u>2f</u>	CH ₃ -(CH ₂) ₂ -		8.4	0.063	0.64
<u>2g</u>	CH ₃ -(CH ₂) ₄		8.8	0.270	6.6
<u>2h</u>	Ph		9.1	0.180	>10
Samixogrel			7.8	1.76	0.19

a: all compounds had satisfactory IR,MS and ¹H, ¹³C-NMR analysis; b: values represent at least three determinations

R ² NHSO ₂ Cl R ¹ X Compound*			Stereo chemistry	Inhibition of U46619 induced		Anti- synthase	
	R¹	R²	x		contraction of isolated rabbit saphenous vein (pA ₂) ^b	aggregation of human platelets (IC ₅₀ μM) ^b	activity (IC ₅₀ µM) ^b
<u>2i</u>		Н	CH=CH(CH₂)₂COOH	Е	11.1	0.047	1.4
<u>2i</u>	"	"	CH=CH-(CH₂)₃COOH	Е	8.9	0.450	1.1
<u>2k</u>	n	11	tt	Z	9.7	0.160	0.35
<u>21</u>	Н		CH=CH(CH₂)₂COOH	Е	9.4	0.009	> 10
<u>2m</u>	#	11	CH=CH-(CH ₂) ₃ COOH	E	8.7	1.200	> 5
<u>2n</u>	#	11	"	Z	8.6	0.090	4.2
<u>20</u>	CH₃	11	**	E	8.1	0.460	2.9
<u>2p</u>	,,	H	**	Z	8.0	1.000	0.96

TABLE II: Biological activities of compounds 2

a: all compounds had satisfactory IR,MS and ¹H, ¹³C-NMR analysis; b: values represent at least three determinations

Acknowledgements

The authors thank Véronique Barou, Edith Bonhomme, Sophie Coumailleau, Yvette Menant, Philippe Mennecier for excellent technical assistance and Solange Huet for secretarial assistance.

References and notes:

- Presented in part at the 210th National American Chemical Society Meeting, Chicago, Ill., Poster MEDI062, August 20-24, 1995.
- 2. Morinelli, T.A.; Halunshka, P.V. Trends Cardiovasc. Med. 1991, 1, 157.
- 3. Hall, S.E. Med. Res. Review 1991, 11, 503.
- Cross, P.; Dickinson, R.P. Annual Reports in Medicinal Chemistry Vol 22; Bayley, D.M.; Ed; Academic Press Inc.; Orlando, 1987, pp. 95-105.
- 5. Gresele, P.; Van Houte, E.; Arnout, J.; Deckmyn, H.; Vermylen, J. Thromb. Haemostasis 1984, 52, 364.
- Soyka, R.; Heckel, A.; Nickl, J.; Eisert, W.; Müller, T.H.; Weisenberger, H. J. Med. Chem. 1994, 37, 26 and references cited berein
- 7. Bhagwat, S.S. Drugs of the Future 1994, 19, 765.
- 8. Ullrich, V.; Brugger, R. Angew. Chem. Int. Ed. Engl. 1994, 33, 1911.
- 9. Kato, K.; Ohkawa, S.; Terao, S.; Terahita, Z.; Nishikawa, K. J. Med. Chem. 1985, 28, 287.
- 10. Cimetière, B.; Dubuffet, T.; Muller, O.; Descombes, J.J.; Simonet, S.; Laubie, M.; Verbeuren, T.J.; Lavielle, G. Bioorg. Med. Chem. Lett. preceding paper.
- 11. Prepared by the addition of the lithiated anion of 3-picoline to Bu₃SnCl in tetrahydrofuran added with 1 eq of HMPA.
- 12. Dichloromethane/Methanol; 95v/5v.
- 13. Marianoff, B.E.; Reitz, A.B.; Duhl-Emswiler, B.A. J. Am. Chem. Soc. 1985, 107, 217.
- 14. Takeuchi, K; Paschal, J.W.; Loncharich, R.J. J. Org. Chem. 1995, 60, 156.
- 15. Watts, I.S.; Wharton, K.A.; Lanley, P. Br. J. Pharmacol. 1991, 102, 492.